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Abstract. We present an exact bond-to-site transformation for diffusion-limited aggregation. 
The equivalence maps a class of partial adhesion problems on arbitrary lattices to absolute 
adhesion problems on transformed lattices. Examples are given for diffusion in the presence 
and absence of an external field. The correspondence relates two conjectured aspects of 
universality in the scaling behaviour, namely the irrelevance of lattice structure and adhesion 
probability. 

Since the introduction of the Witten-Sander model (1981), much research has been 
conducted on the problem of diffusion-limited aggregation (DLA). In Monte Carlo 
studies, scaling behaviour has been observed both in this model and in many variants 
of it. As in critical phenomena, this scaling behaviour is believed to depend on the 
dimensionality of the lattice but not on the details of its structure (Witten and Sander 
1981, 1983, Meakin 1983a, b). Universality is also observed when the condition for 
adhesion of the diffusing particle to the aggregate is varied (Witten and Sander 1983, 
Meaking 1983a, b). To be specific, the case where the particle adheres on first contact 
(absolute adhesion) seems to scale in the same way as in cases where the probability 
of adhesion on contact is less than one (partial adhesion). At the moment the support 
for these conjectures for aggregation on Euclidean lattices comes solely from simula- 
tions: no exact results are yet available. 

In this letter we relate the above two types of universality by presenting an exact 
bond-to-site transformation from a class of partial adhesion problems to problems 
with absolute adhesion. The underlying lattice is also transformed. Such mappings 
have provided important results in the understanding of universality in equilibrium 
statistical mechanics (Syozi 1972) and percolation (Fisher 1961). We shall illustrate 
the transformation for both DLA and directed diffusion-limited aggregation ( DDLA) on 
the honeycomb lattice. However, the mapping can be applied to DLA and DDLA on 
any lattice. 

First we review the aggregation process. In both DLA and DDLA a single particle 
executes a random walk on a lattice containing a static set of particles known as the 
aggregate. Typically the initial aggregate consists either of a single seed particle or a 
substrate (i.e., a line of seeds). In DDLA there is a preferred direction for the walk 
(Meakin 1983c, Jullien et a1 1984, Nadal et al 1984), while in DLA the walk is unbiased. 
When the diffusing particle reaches a site adjacent to one of the particles in the 
aggregate, there is some probability that the particle adheres to the aggregate. If this 
probability is unity, we say there is absolute adhesion; otherwise there is partial 
adhesion. If the particle adheres to the aggregate, its motion stops, it becomes part 
of the aggregate, and another diffusing particle is introduced. Otherwise it continues 
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to walk on the unoccupied sites. If the diffusing particle escapes to infinity, another 
is introduced. 

It is necessary to be more precise about what we mean by partial adhesion. In the 
absence of an aggregate there are several paths that may be taken by the diffusing 
particle at the next time step. In the presence of the aggregate, some or all of these 
possible paths may be blocked by particles of the aggregate. We define the discrete 
variable x (where 0 5 x 1 )  to be the fraction of such possible paths which are blocked. 
To describe varying adhesion probability, we introduce a one-paramter family, PA (x) = 
xA (Os A s 1) .  Note that P,(O) = 0. The parameter A is a measure of the adhesion, 
and the function P A ( x )  is the probability that a diffusing particle adheres when a 
fraction x of its paths are blocked. This class of functions has a number of desirable 
features. Since PA(0)  = 0, if the diffusing particle is not adjacent to the aggregate, there 
is no chance of adhesion. The property PA( 1)  = 1 ensures that if all possible paths are 
blocked, the particle will adhere. Since PA (x)  is an increasing function of x, the adhesion 
probability increases with the fraction of blocking sites. 

Two values of A deserve special attention. The case A = 0 corresponds to absolute 
adhesion. The diffusing particle checks all possible paths and adheres if any are 
blocked. The case A = 1 ( P A  (x)  = x) also has a simple interpretation. The diffusing 
particle selects one of the possible paths and adheres at its present location if that 
path is blocked. Otherwise it moves along the chosen path. Since PA (x )  is an decreasing 
function of A, the intermediate values of A provide a smooth interpolation between 
these two cases. 

In this letter we present a bond-to-site mapping which transforms partial adhesion 
problems with A = 1 to others with A = O  (absolute adhesion). As well as altering the 
type of adhesion, the mapping also changes the lattice structure. We explain the 
transformation on the honeycombe lattice site, first for DDLA and then for DLA. As 
mentioned before, the mapping is general and can easily be applied to any lattice 
structure. This correspondence implies an exact equivalence between the scaling 
behaviours of the two problems. We also examine the scaling behaviour for intermedi- 
ate values of A. 

We first consider the problem of DDLA on the honeycomb lattice with A = 1. The 
transformed problem is DDLA on a decorated square lattice with absolute adhesion 
( A  = 0). Both lattices are shown in figure 1 (with full lines and full circles). The broken 

Figure 1. Mapping for DDLA from partial adhesion on the honeycomb lattice to absolute 
adhesion on the decorated square lattice. The downward arrow indicates the required 
direction for the walks. The broken lines and open circles show how the transformed 
lattice is constructed. 
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lines and open circles will be used later to describe the transformation. The walks on 
both lattices are directed; in each case upward motion is strictly forbidden. Therefore, 
at each stage the walk can continue along at most two paths. Choices between paths 
are made with equal probability. . 

A site on the honeycomb lattice has either one or two paths beneath it. Therefore, 
the adhesion can be described as follows. If there is only one path, the presence of 
an aggregate particle below results in adhesion. If there are two paths, the presence 
of one aggregate particle results in adhesion with probability f. If both paths are 
blocked, the diffusing particle must adhere. In contrast, the adhesion on the decorated 
square lattice is absolute: if there are two paths downward and one is blocked, the 
diffusing particle must adhere. 

We now describe the mapping between the two problems. The construction of the 
new lattice (and the allowed walks on this lattice) proceeds by a bond-to-site transforma- 
tion. On each bond of the old lattice (i.e., the lattice for the ( A  = 1) partial adhesion 
problem), place a site of the new lattice ( A  = 0). Connect two sites of the new lattice 
if the corresponding bonds in the old lattice meet at a vertex and there is an allowed 
walk from one bond to the other in the old lattice. The allowed directions between 
sites of the new lattice are the same as the directions for the allowed walks between 
the two bonds of the old lattice. As shown in figure 1, this prescription transforms 
DDLA on the honeycomb lattice to DDLA on the decorated square lattice. In both 
lattices each bond can be traversed in only one direction. A detailed explanation of 
the equivalence will be given shortly. 

Note that when the bond-to-site mapping for percolation (Fisher 1961) is applied 
to bond percolation on the honeycomb lattice, the transformed (or covering) lattice is 
the KagomC, not the decorated square. The reason for this is that not all pairs of 
adjacent sites are connected in our transformed lattice. For example, in figure 2 there 
is a walk A + C  because the walk 1 + 3 + 4  is permitted in the old lattice. However, 
there is no walk A+ B since the walk 1 + 3 +  2 is not allowed in the old lattice. 

1 

Figure 2. Detail showing allowed directions for 
walks in DDLA. 

Figure 3. An example of the correspondence 
between the aggregation processes in DDLA, showing 
both the aggregates and the walks. On the honey- 
comb lattice the bold full lines represent the aggre- 
gate and walk. On the decorated square lattice these 
features are represented by broken lines. 
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To demonstrate the equivalence between the A = 1 partial adhesion problem on the 
honeycomb lattice and the absolute adhesion problem on the decorated square lattice, 
we first show that there is an exact correspondence between walks on the two lattices 
even in the presence of the aggregate. In figure 3 we illustrate this by showing the 
path of a diffusing particle on the honeycomb lattice (1 + 2 + 3 + 4 + 5 + 6 )  in the 
presence of an aggregate (7-8-9-0). The figure also shows the corresponding path for 
the diffusing particle on the transformed lattice (A+ B + C + D + E + F) and the trans- 
formed aggregate (I-J-K). 

Away from the aggregate the walks have the same weight since every choice made 
by one is also made by the other. When the first particle chooses to go from 2 to 3 
with probability $, the second goes from A to B with the same probability. The first 
particle then advances from 3 to 4 with probability 1, while the second must go from 
B to C. In the presence of the aggregate the partial adhesion of the first particle 
corresponds to the choice of the second particle between two paths. When the first 
particle reaches 4, it chooses not to adhere (to 7 )  with probability f, but to move instead 
to 5. The corresponding particle on the second lattice chooses to go from C to D 
rather than from C to H (where it would stop), also with probability f. When the first 
particle reaches 6, it chooses to adhere (to 9) with probability i, while the second 
particle chooses to move from E to F (where it adheres to K) with probability f. 

To see that the adhesion on the transformed lattice is absolute, consider the 
subsequent evolution of this aggregate. After the adhesion described in the previous 
paragraph, if a diffusing particle on the honeycomb lattice later reaches 5,  it must 
adhere since the only available path (to 6)  is blocked. The particle on the transformed 
lattice moves to the vacant site E, where it must adhere to the particle at F, although 
G is unoccupied. 

Having demonstrated the equivalence of the walks and the adhesion, we next 
consider the growth of the aggregates. Again using figure 3, note that on the honeycomb 
lattice the initial seed at 0 must grow to 9, so the aggregate (0-9) can also be considered 
as the seed. The corresponding aggregate K is the seed on the decorated square lattice 
and also has unit probability. Since the walks on the two lattices are equivalent, the 
subsequent growth of these aggregates will also be in exact correspondence. For every 
diffusive walk on the honeycomb lattice which misses the aggregate, there is one of 
equal weight on the decorated square lattice which also escapes. For every walk on 
the honeycomb lattice which terminates by adhesion at a given site, there is a walk of 
equal probability on the decorated square lattice which adheres at the corresponding 
site. Therefore, at each stage the possible aggregates on one lattice can be matched 
up with equally probable aggregates on the other lattice. Note that this anlaysis also 
holds if the initial aggregate is a substrate (line of seeds) rather than a single seed. 
Because of this correspondence the two problems must have the same scaling behaviour. 

This correspondence also enables us to relate two conjcctured but generally accepted 
aspects of universality, namely that scaling behaviour is independent of lattice structure 
and independent of adhesion probability. For example, if we assume that DDLA with 
absolute adhesion has the same scaling properties on our two lattices, then the mapping 
shows that the models with A = O  and A = 1 on the honeycomb lattice have the same 
exponents. In particular, the average height L of the aggregates has the asymptotic 
form L -  Nul (Nadal et al 1984), where N is the number of particles in the aggregate. 
The exponent vll must be the same in both problems. 

In fact, the intermediate cases with 0 < A < 1 also have this value of vll. To see this, 
recall that the adhesion probability P A ( x )  is a decreasing function of A. The average 
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height L(A)  is therefore a decreasing function of A-the larger the adhesion probability, 
the greater the average height. Thus, L(A)  is bounded above and below by L(0)  and 
L( l) ,  and these both grow as Null. We conclude that L(A)  - N”11 for OS A S 1. There- 
fore, if lattice structure is irrelevant, the adhesion probability is also irrelevant. Note 
that this argument does not depend on the particular one-parameter family we have 
chosen. Any intermediate case with P ( 0 )  = 0 and x s P ( x )  s 1 will be bounded above 
and below in the same fashion. 

The converse is also true. If we assume that the scaling behaviour on the honeycomb 
lattice is independent of adhesion probability, then the mapping proves that DDLA 

with absolute adhesion has the same behaviour on both the honeycomb and decorated 
square lattices. Therefore, the mapping relates the two conjectures that adhesion 
probability and lattice structure are irrelevant. 

In one case this result can be further strengthened. DDLA on the Bethe lattice 
(Bradley and Strenski 1984a, b) with partial adhesion ( A  = 1) maps to DDLA on the 
same lattice with absolute adhesion under this transformation. No assumption is 
needed to prove that the adhesion probability is irrelevant. 

The mapping is not restricted to directed diffusion. However, in DLA the transformed 
walks are more complicated. To illustrate this point, we consider DLA on the honeycomb 
lattice with partial adhesion ( A  = 1). In this problem the diffusing particle chooses 
one of three directions with probability f ,  and stops at its present location if the site 
in that direction is already occupied. Thus, with one nearest-neighbour site occupied 
the diffusing particle stops with probability i, and with two nearest-neighbour sites 
occupied it stops with probability f .  

When the prescription given before is applied to this problem, the transformed 
lattice is the KagomC lattice (figure 4) with absolute adhesion ( A  = 0). Note that now 
the bonds may be traversed in either direction. However, there are some restrictions 
on the diffusive walk on this lattice. Although a given site on the KagomC lattice has 
four paths leading from it, not all of these will be allowed walks at any one time step. 
The allowed directions will depend on the direction of the motion at the previous time 
step. For example, suppose the particle on the KagomC lattice (figure 5) is at B. If 
the last walk on the honeycomb lattice was 3+4,  then the allowed paths at the next 
time step are B + C and B +  E. However, if the previous motion was 4+  3, then the 
allowed paths are instead B + A and B + D. Since the motion 3 + 4 + 3 is permitted, 

Figure 4. Mapping for DLA from partial adhesion 
on the honeycomb lattice to absolute adhesion on 
the Kagome lattice. The broken lines and open 
circles show how the transformed lattice is con- 
structed. 

Figure S. Detail showing restrictions on transformed 
walks in DLA.  
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the particle on the KagomC lattice may also remain at B at a given time step. If this 
occurs then the allowed directions for the next step in the walk will change. These 
conditions on the transformed walk can be summarised by ascribing a binary ‘momen- 
tum’ to the transformed particle. This ‘momentum’ lies along the direction of the bond 
in the old lattice. At each stage of the walk on the KagomC lattice the particle can 
move in one of the two directions along its present ‘momentum’, or this ‘momentum’ 
can flip while the position remains constant. Each of these possibilities has probability 
f. The resulting walk is still unbiased globally, but has a preference locally for motion 
in the same direction. 

In summary, we have constructed a general mapping for aggregation from a 
particular form of partial adhesion on one lattice to others with absolute adhesion on 
a transformed lattice. Examples of the transformation have been presented on the 
honeycomb lattice for both DDLA and DLA. The mapping relates two conjectured 
aspects of universality, namely that lattice structure and adhesion probability are 
irrelevant. 

We thank S Doniach and P Gelband for comments and criticism. We are also grateful 
to M Kolb for a helpful discussion. This work was supported by an IBM Predoctoral 
Fellowship awarded to RMB and NSF grant DMR-80-07934. 
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